30 research outputs found

    Optimizing recovery protocols for replicated database systems

    Full text link
    En la actualidad, el uso de tecnologías de informacíon y sistemas de cómputo tienen una gran influencia en la vida diaria. Dentro de los sistemas informáticos actualmente en uso, son de gran relevancia los sistemas distribuidos por la capacidad que pueden tener para escalar, proporcionar soporte para la tolerancia a fallos y mejorar el desempeño de aplicaciones y proporcionar alta disponibilidad. Los sistemas replicados son un caso especial de los sistemas distribuidos. Esta tesis está centrada en el área de las bases de datos replicadas debido al uso extendido que en el presente se hace de ellas, requiriendo características como: bajos tiempos de respuesta, alto rendimiento en los procesos, balanceo de carga entre las replicas, consistencia e integridad de datos y tolerancia a fallos. En este contexto, el desarrollo de aplicaciones utilizando bases de datos replicadas presenta dificultades que pueden verse atenuadas mediante el uso de servicios de soporte a mas bajo nivel tales como servicios de comunicacion y pertenencia. El uso de los servicios proporcionados por los sistemas de comunicación de grupos permiten ocultar los detalles de las comunicaciones y facilitan el diseño de protocolos de replicación y recuperación. En esta tesis, se presenta un estudio de las alternativas y estrategias empleadas en los protocolos de replicación y recuperación en las bases de datos replicadas. También se revisan diferentes conceptos sobre los sistemas de comunicación de grupos y sincronia virtual. Se caracterizan y clasifican diferentes tipos de protocolos de replicación con respecto a la interacción o soporte que pudieran dar a la recuperación, sin embargo el enfoque se dirige a los protocolos basados en sistemas de comunicación de grupos. Debido a que los sistemas comerciales actuales permiten a los programadores y administradores de sistemas de bases de datos renunciar en alguna medida a la consistencia con la finalidad de aumentar el rendimiento, es importante determinar el nivel de consistencia necesario. En el caso de las bases de datos replicadas la consistencia está muy relacionada con el nivel de aislamiento establecido entre las transacciones. Una de las propuestas centrales de esta tesis es un protocolo de recuperación para un protocolo de replicación basado en certificación. Los protocolos de replicación de base de datos basados en certificación proveen buenas bases para el desarrollo de sus respectivos protocolos de recuperación cuando se utiliza el nivel de aislamiento snapshot. Para tal nivel de aislamiento no se requiere que los readsets sean transferidos entre las réplicas ni revisados en la fase de cetificación y ya que estos protocolos mantienen un histórico de la lista de writesets que es utilizada para certificar las transacciones, este histórico provee la información necesaria para transferir el estado perdido por la réplica en recuperación. Se hace un estudio del rendimiento del protocolo de recuperación básico y de la versión optimizada en la que se compacta la información a transferir. Se presentan los resultados obtenidos en las pruebas de la implementación del protocolo de recuperación en el middleware de soporte. La segunda propuesta esta basada en aplicar el principio de compactación de la informacion de recuperación en un protocolo de recuperación para los protocolos de replicación basados en votación débil. El objetivo es minimizar el tiempo necesario para transfeir y aplicar la información perdida por la réplica en recuperación obteniendo con esto un protocolo de recuperación mas eficiente. Se ha verificado el buen desempeño de este algoritmo a través de una simulación. Para efectuar la simulación se ha hecho uso del entorno de simulación Omnet++. En los resultados de los experimentos puede apreciarse que este protocolo de recuperación tiene buenos resultados en múltiples escenarios. Finalmente, se presenta la verificación de la corrección de ambos algoritmos de recuperación en el Capítulo 5.Nowadays, information technology and computing systems have a great relevance on our lives. Among current computer systems, distributed systems are one of the most important because of their scalability, fault tolerance, performance improvements and high availability. Replicated systems are a specific case of distributed system. This Ph.D. thesis is centered in the replicated database field due to their extended usage, requiring among other properties: low response times, high throughput, load balancing among replicas, data consistency, data integrity and fault tolerance. In this scope, the development of applications that use replicated databases raises some problems that can be reduced using other fault-tolerant building blocks, as group communication and membership services. Thus, the usage of the services provided by group communication systems (GCS) hides several communication details, simplifying the design of replication and recovery protocols. This Ph.D. thesis surveys the alternatives and strategies being used in the replication and recovery protocols for database replication systems. It also summarizes different concepts about group communication systems and virtual synchrony. As a result, the thesis provides a classification of database replication protocols according to their support to (and interaction with) recovery protocols, always assuming that both kinds of protocol rely on a GCS. Since current commercial DBMSs allow that programmers and database administrators sacrifice consistency with the aim of improving performance, it is important to select the appropriate level of consistency. Regarding (replicated) databases, consistency is strongly related to the isolation levels being assigned to transactions. One of the main proposals of this thesis is a recovery protocol for a replication protocol based on certification. Certification-based database replication protocols provide a good basis for the development of their recovery strategies when a snapshot isolation level is assumed. In that level readsets are not needed in the validation step. As a result, they do not need to be transmitted to other replicas. Additionally, these protocols hold a writeset list that is used in the certification/validation step. That list maintains the set of writesets needed by the recovery protocol. This thesis evaluates the performance of a recovery protocol based on the writeset list tranfer (basic protocol) and of an optimized version that compacts the information to be transferred. The second proposal applies the compaction principle to a recovery protocol designed for weak-voting replication protocols. Its aim is to minimize the time needed for transferring and applying the writesets lost by the recovering replica, obtaining in this way an efficient recovery. The performance of this recovery algorithm has been checked implementing a simulator. To this end, the Omnet++ simulating framework has been used. The simulation results confirm that this recovery protocol provides good results in multiple scenarios. Finally, the correction of both recovery protocols is also justified and presented in Chapter 5.García Muñoz, LH. (2013). Optimizing recovery protocols for replicated database systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/31632TESI

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra

    Get PDF
    This paper documents the 16th data release (DR16) from the Sloan Digital Sky Surveys (SDSS), the fourth and penultimate from the fourth phase (SDSS-IV). This is the first release of data from the Southern Hemisphere survey of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2); new data from APOGEE-2 North are also included. DR16 is also notable as the final data release for the main cosmological program of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), and all raw and reduced spectra from that project are released here. DR16 also includes all the data from the Time Domain Spectroscopic Survey and new data from the SPectroscopic IDentification of ERosita Survey programs, both of which were co-observed on eBOSS plates. DR16 has no new data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (or the MaNGA Stellar Library "MaStar"). We also preview future SDSS-V operations (due to start in 2020), and summarize plans for the final SDSS-IV data release (DR17)

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014–2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Centrality evolution of the charged-particle pseudorapidity density over a broad pseudorapidity range in Pb-Pb collisions at root s(NN)=2.76TeV

    Get PDF
    Peer reviewe
    corecore